Skip to main content Skip to navigation

Min Du

Min Du

Min Du

Professor and Funded Chair in Growth Biology
Office: Veterinary and Biomedical Research Building (VBRB) 155
Phone: 509-335-2744
min.du@wsu.edu

Nutrigenomics and Growth Biology Laboratory

Our research is focused on the development of skeletal muscle and adipose tissue. Specifically, we are interested in exploring epigenetic mechanisms regulating the differentiation of mesenchymal stem cells into myocytes and adipocytes. Our studies have applications to both animal agriculture and human health.

For animal agriculture, we are studying the impact of early nutrition on the growth and development of skeletal muscle and adipose tissue, which impacts animal production efficiency and meat quality.

For human health, we are exploring the epigenetic changes in progenitor cells during fetal development as affected by obesity and diabetes.

We use in vitro cell culture, transgenic animals and livestock as experimental models. A wide range of laboratory techniques are used in our studies, including immunoblotting, ELISA, immunohistochemical staining, pyrosequencing and proteomic analyses, real-time PCR, DNA manipulation, RNA interference and epigenetic analyses, as well as traditional biochemical and enzyme activity assays.

Specific Research Areas:

  • Nutritional regulation of skeletal muscle and adipose tissue development
  • Epigenetic regulation of stem cell differentiation into myocytes and adipocytes
  • Fetal development and its long-term effect on offspring performance

Most Frequently Cited Publications:

For complete publication list, please visit Publons: https://publons.com/researcher/1424139/min-du/

  • Chen, Y.T., Y. Hu, Q.Y. Wang, J.S. Son, X.D. Liu, J.M. de Avila, M. J. Zhu, and M. Du. (2020). Excessive glucocorticoids during pregnancy impair fetal brown fat development and predisposes offspring to metabolic dysfunctions. Diabetes, In press.
  • Sun, J., L. Zhao, Y. Chen, K. Chen, S. A. Chae, J. M. de Avila, H. Wang, M.J. Zhu, Z. Jiang, and M. Du. (2020). Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Science Advances, 6: eaaz0359.
  • Tian, Q., J. Zhao, Q. Yang, B. Wang, J. Deavila, M.J. Zhu, and M. Du. (2020). Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice. Aging Cell, 19: e13059.
  • Zhao, L., B. Wang, N. Gomez, J. Deavila, M. J. Zhu, and M. Du. (2020). Even a Low Dose of Tamoxifen Profoundly Induces Adipose Tissue Browning in Female Mice. International Journal of Obesity, 44,226-234.
  • Li, X., X. Fu, G. Yang, and M. Du. (2019). Review: Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal, 14: 312-321.
  • Son, J., X. Liu, Q. Tian, L. Zhao, Y. Chen, Y. Hu, S. A. Chae, J. M. Deavila, M. J. Zhu, and M. Du. (2019). Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. Journal of Physiology, 597: 3333-3347.
  • Zhao, L., Y. Huang, and M. Du. (2019). Farm Animals for Studying Muscle Development and Metabolism: dual purposes for animal production and human health. Animal Frontiers, 9:3.
  • Wei, S., A. Li, L. Zhang, and M. Du. (2019). Long noncoding RNAs in adipogenesis and adipose development of meat animals. Journal of Animal Science, 97: 2644-2657.
  • Wang, H., Y. Chen, X. Mao, and M. Du. (2019). Maternal obesity impairs fetal mitochondriogenesis and brown adipose tissue development partially via upregulation of miR-204-5p. BBA-Molecular Basis of Disease, 1865: 2706-2715.
  • Wang, H., X. Mao, and M. Du. (2019). Phytanic acid activates PPARa to promote beige adipogenic differentiation of preadipocytes. Journal of Nutritional Biochemistry, 67: 201-211.
  • Chen, Y., Y. Yang, and M. Du. (2018). Beyond brown adipogenesis the inheritance of imprinted H19. Non-coding RNA Investigation, 2:64.
  • Maricelli, J. A., Y. M. Bishaw, B. Wang, M. Du, and B. D. Rodgers. (2018). Systemic SMAD7 gene therapy increases striated muscle mass and enhances exercise capacity in a dose-dependent manner. Human Gene Therapy, 29: 390-399.
  • Wang, B., X. Fu, X. Liang, J. M. Deavila, Z. Wang, L. Zhao, Q. Tian, J. Zhao, N. A. Gomez, S. C. Trombetta, M. J. Zhu, and M. Du. (2017). Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRa+ adipose progenitors. Cell Discovery, 3:17036.
  • Fu, X., Q. Yang, B. Wang, J. Zhao, M. Zhu, S. M. Parish, and M. Du. (2017). Reduced satellite cell density and myogenesis in Wagyu compared to Angus cattle as a possible explanation of its high marbling. Animal, 9: 1-8.
  • Wang, B., Z. Wang, J. M. de Avila, M. J. Zhu, F. Zhang, N. A. Gomez, L. Zhao, Q. Tian, J. Zhao, J. Maricelli, H. Zhang, B. D. Rodgers, and M. Du. (2017). Moderate alcohol intake induces thermogenic brown/beige adipocyte formation via elevating retinoic acid signaling. FASEB Journal, 31: 4612-4622.
  • Wang, B., X. Fu, M.J. Zhu, and M. Du. (2017). Retinoic acid inhibits white adipogenesis by disrupting GADD45A mediated Zfp423 DNA demethylation. Journal of Molecular Cell Biology, 9: 338-349.
  • Du, M., S.P. Ford, and M. J. Zhu. (2017). Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Animal Frontiers, 7: 5-11.
  • Sun, X. X. Fu, Q. Y. Yang, M. Du, and M. J. Zhu. (2017). AMPK regulate intestinal differentiation via histone modification of CDX2. Cell Death and Differentiation, 24: 819-831.
  • Wang, S., X. Liang, Q. Yang, X. Fu, M. Zhu, B.D. Rodgers, Q. Jiang, M. V. Dodson, and M. Du. (2017). Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) a1 in mice fed high-fat diet. Molecular Nutrition and Food Research, 61: 1600746.
  • Wang B., X. Fu, X. Liang, Z. Wang, Q. Yang, T. Zou, W. Nie, J. Zhao, P. Gao, M. J. Zhu, J. M. De Avila, J. Maricelli, B. D. Rodgers, and M. Du. (2017). Maternal retinoids increase PDGFRa progenitor population and beige adipogenesis in progeny by stimulating vascular development. EBioMedicine, 18:288-299.
  • Zou, T., Q. Yang, B. Wang, M. Zhu, P. W. Nathanielsz, and M. Du. (2017). Resveratrol supplementation to high fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. Journal of Physiology, 595: 1547-1562.
  • Yang, Q., X. Liang, X. Sun, L. Zhang, X. Fu, C. J. Rogers, A. Berim, S. Zhang, S. Wang, B. Wang, M. Foretz, B. Viollet, D. R. Gang, B. D. Rodgers, M. Zhu, and M. Du. (2016). AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metabolism, 24: 542-554.
  • Liang, X., Q. Yang, X. Fu, C. J. Rogers, B. Wang, H. Pan, M. J. Zhu, P. W. Nathanielsz, and M. Du. (2016). Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice. Journal of Physiology, 594: 4453-4466.
  • Fu, X., M. J. Zhu, S. Zhang, F. Marc, V. Benoit, and M. Du. (2016). Obesity impairs skeletal muscle regeneration via inhibition of AMP-activated protein kinase. Diabetes. 65: 188-200.
  • Zhang, H., M. Du, Q. Yang, and M. J. Zhu. (2016). Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. Journal of Nutritional Biochemistry, 27: 299-306.
  • Fu, X., M. J. Zhu, M. V. Dodson, and M. Du. (2015). AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. Journal of Biological Chemistry. 290: 26445-26456.
  • Wang, S., X. Liang, Q. Yang, X. Fu, C. J. Rogers, M. J. Zhu, B. D. Rodgers, Q. Jiang, M. V. Dodson, and M. Du. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. International Journal of Obesity, 39: 967-976.
  • Dodson, M.V., R.E. Allen, M. Du, W.G. Bergen, S.G. Velleman, S.P. Poulos, M. Fernyhough-Culver, M.B. Wheeler, S.K. Duckett, M.R.I. Young, B.H. Voy, Z. Jiang, and G.J. Hausman. (2014). Invited Review: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. Journal of Animal Science, 93: 457-481.
  • Duarte, M. S., M.P. Gionbelli, P.V.R. Paulino, N.V.L. Serão, C.S. Nascimento, M.E. Botelho, T.S. Martins, S.C.V. Filho, M.V. Dodson, S.E.F. Guimarães, M. Du. (2014). Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. Journal of Animal Science, 92: 3846-3854.
  • Fu, X., J. X. Zhao, X., M. J. Zhu, M. Foretz, B. Viollet, M. V. Dodson, and M. Du. (2013). AMP-activated protein kinase a1 but not a2 catalytic subunit potentiates myogenin expression and myogenesis. Molecular and Cell Biology, 33: 4517-4525.
  • Fu, X., J. X. Zhao, J. F. Liang, M. J. Zhu, M. Foretz, B. Viollet, and M. Du. (2013). AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. American Journal of Physiology – Cell Physiology, 305: C887-895.
  • Yang, Q. Y., J .F. Liang, C. J. Rogers, J. X. Zhao, M. J. Zhu, and M. Du. (2013). Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes, 62: 3727-3735.
  • Du, M., Y. Huang, A. K. Das, Q. Yang, M. S. Duarte, M. V. Dodson, and M. J. Zhu. (2013). Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal of Animal Science, 91: 1419-1429.
  • Yan, X.,Y. Huang,  J. X. Zhao, C. J. Rogers, M. J. Zhu, S. P. Ford, P. W. Nathanielsz, and M. Du. (2013). Maternal obesity down-regulates microRNA (miRNA) let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. International Journal of Obesity, 37: 568-575.
  • Huang, Y., A. K. Das, Q. Y. Yang, M. J. Zhu, and M. Du. (2012). Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLOS one, 7(10): e47496.
  • Huang, Y., J. X. Zhao, X. Yan, M. J. Zhu, N. M. Long, R. J. McCormick, S. P. Ford, P. W. Nathannielsz, and M. Du. (2012). Maternal obesity enhances collagen accumulation and cross-linking in skeletal muscle of ovine offspring. PLOS one, 7, e31691.
  • Du, M., J. X. Zhao, X. Yan, Y. Huang, L. V. Nicodemus, W. Yue, R. J. McCormick, and M. J. Zhu. (2011). Fetal muscle development, mesenchymal multipotent cell differentiation and associated signaling pathways. Journal of Animal Science, 89: 583-590.
  • Yan, X., Y. Huang, J. X. Zhao, N. M. Long, A. B. Uthlaut, M. J. Zhu, S. P. Ford, P. W. Nathanielsz, and M. Du. (2011). Maternal obesity impaired insulin signaling and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biology of Reproduction, 85: 172-178.
  • Zhao, J. X., W. F. Yue, M. J. Zhu, and M. Du. (2011). AMP-activated protein kinase regulates b-catenin transcription via histone deacetylase 5. Journal of Biological Chemistry, 286: 16426-16434.
  • Du, M., J. D. Yin, and M. J. Zhu. (2010). Cellular signaling pathways regulating adipogenesis and marbling of skeletal muscle. Meat Science, 86:103-109.
  • Huang, Y., X. Yan, J. X. Zhao, M. J. Zhu, R. J. McCormick, S. P. Ford, P. W. Nathanielsz, J. Ren, and M. Du. (2010). Maternal obesity induces fibrosis in fetal myocardium of sheep. American Journal of Physiology-Endocrinology and Metabolism, 299: E968-975.
  • Yan, X., M. J. Zhu, W. Xu, J. F. Tong, S. P. Ford, P. W. Nathanielsz, and M. Du. (2010). Up-regulation of TLR4/NF-κB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology, 151: 380-387.
  • Huang, Y., X. Yan, M. J. Zhu, R. J. McCormick, S. P. Ford, P. W. Nathanielsz, and M. Du. (2010). Enhanced transforming growth factor b (TGF-b) signaling and fibrogenesis in fetal skeletal muscle of obese sheep at late gestation.  American Journal of Physiology-Endocrinology and Metabolism, 298: E1254-E1260.
  • Du, M., X. Yan, J. F. Tong, J. X. Zhao, and M. J. Zhu. (2010). Maternal obesity, inflammation and fetal skeletal muscle development. Biology of Reproduction, 82: 4-12.
  • Tong, J. F., X. Yan, M. J. Zhu, S. P. Ford, P. W. Nathanielsz, and M. Du. (2009). Maternal obesity down-regulates myogenesis and β-catenin signaling in fetal skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 296: E917-924.
  • Zhu, M. J., B. Han, J. Tong, C. Ma, J. M. Kimzey, K. R. Underwood, C. Ma, S. P. Ford, P. W. Nathanielsz, and M. Du. (2008). AMP-activated protein kinase signaling pathways are down-regulated and skeletal muscle development impaired in fetuses of obese, overnourished sheep. Journal of Physiology, 586: 2651-2664.
  • Shen, Q. W., M. J. Zhu, J. Tong, J. Ren, and M. Du. (2007). Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by a-lipoic acid in C2C12 myotubes. American Journal of Physiology-Cell Physiology, 293: C1395-1403.
  • Zhu, M. J., S. P. Ford, W. J. Means, B. W. Hess, P. W. Nathanielsz, and M. Du. (2006) Maternal nutrient restriction affects muscle fiber number and composition in skeletal muscle of offspring. Journal of Physiology, 575: 241-250.